1-(3-chlorophenyl)-3-[2-(dimethylamino)-2-phenylethyl]thiourea is a chemical compound, often shortened to **CP-105,696** or **CP-105696**. It's a **potent and selective inhibitor of the enzyme acetylcholinesterase (AChE)**.
**Why is it important for research?**
* **Neurological Research:** AChE is a crucial enzyme in the nervous system, breaking down the neurotransmitter acetylcholine. Inhibitors like CP-105,696 can therefore increase acetylcholine levels, making them potentially useful for treating conditions like:
* **Alzheimer's disease:** AChE inhibitors are a mainstay in treating Alzheimer's, helping to improve cognitive function.
* **Myasthenia gravis:** This autoimmune disease affects the muscles, and AChE inhibitors can improve muscle strength.
* **Other neurological disorders:** Research is ongoing to see if AChE inhibitors could benefit other conditions, like Parkinson's disease.
* **Understanding AChE Function:** Compounds like CP-105,696 are essential tools for scientists studying AChE. They help researchers understand:
* The enzyme's structure and function.
* How inhibitors bind to the enzyme and block its activity.
* The potential for developing new and improved AChE inhibitors for treating neurological diseases.
* **Potential for Drug Development:** While CP-105,696 itself is not currently a marketed drug, its structure and activity provide valuable information for the development of new AChE inhibitors with better therapeutic profiles.
**Important Notes:**
* **Toxicity:** CP-105,696 and other AChE inhibitors can have side effects, especially if they cross the blood-brain barrier. Therefore, research and development focus on finding safer and more effective compounds.
* **Clinical Trials:** While AChE inhibitors are used in the clinic, ongoing research is exploring new therapeutic uses for these compounds and developing new inhibitors with better efficacy and safety profiles.
In summary, CP-105,696 is a valuable research tool for understanding AChE function and potentially developing new treatments for neurological disorders.
ID Source | ID |
---|---|
PubMed CID | 4391932 |
CHEMBL ID | 1416425 |
CHEBI ID | 117268 |
Synonym |
---|
smr000376414 |
MLS000771752 , |
CHEBI:117268 |
1-(3-chlorophenyl)-3-[2-(dimethylamino)-2-phenylethyl]thiourea |
HMS2674P08 |
sr-01000749637 |
SR-01000749637-2 |
CHEMBL1416425 |
cid_4391932 |
1-(3-chlorophenyl)-3-[2-(dimethylamino)-2-phenyl-ethyl]thiourea |
bdbm83381 |
Q27203904 |
Z45871686 |
AKOS034377702 |
Class | Description |
---|---|
thioureas | Compounds of general formula RR'NC(=S)NR''R'''. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Beta-lactamase | Escherichia coli K-12 | Potency | 89.1251 | 0.0447 | 17.8581 | 100.0000 | AID485294 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 22.3872 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
TDP1 protein | Homo sapiens (human) | Potency | 21.8528 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 89.1251 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 8.2852 | 0.0079 | 8.2332 | 1,122.0200 | AID2546; AID2551 |
Glycoprotein hormones alpha chain | Homo sapiens (human) | Potency | 11.2202 | 4.4668 | 8.3448 | 10.0000 | AID624291 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
alternatively spliced Trp4 | Mus musculus (house mouse) | EC50 (µMol) | 0.5960 | 0.0003 | 3.3370 | 10.5907 | AID434937 |
delta-type opioid receptor | Homo sapiens (human) | EC50 (µMol) | 5.9240 | 0.1320 | 3.5864 | 9.5690 | AID588407; AID588411 |
mu-type opioid receptor isoform MOR-1 | Homo sapiens (human) | EC50 (µMol) | 2.5080 | 0.1320 | 3.3004 | 9.5690 | AID588407; AID588435 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
hormone activity | Glycoprotein hormones alpha chain | Homo sapiens (human) |
protein binding | Glycoprotein hormones alpha chain | Homo sapiens (human) |
follicle-stimulating hormone activity | Glycoprotein hormones alpha chain | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
extracellular region | Glycoprotein hormones alpha chain | Homo sapiens (human) |
extracellular space | Glycoprotein hormones alpha chain | Homo sapiens (human) |
Golgi lumen | Glycoprotein hormones alpha chain | Homo sapiens (human) |
follicle-stimulating hormone complex | Glycoprotein hormones alpha chain | Homo sapiens (human) |
pituitary gonadotropin complex | Glycoprotein hormones alpha chain | Homo sapiens (human) |
extracellular space | Glycoprotein hormones alpha chain | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |